GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-1/2 EXAMINATION – WINTER 2021 Subject Code:3110015 Date:21/03/2022

Subject Name: Mathematics - 2

Time:10:30 AM TO 01:30 PM

Total Marks:70

Marks

04

03

Instructions:

Q.3

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1 (a) Find
$$L\{t^3e^{-4t}\}$$
. 03

(b) Find
$$L^{-1}\left\{\frac{6e^{-2s}}{s^2+4}\right\}$$
.

(c) Verify Green's theorem for the function $\overline{F} = (x + y)i + 2xyj$ and C is 07 the rectangle in the xy-plane bounded by x = 0, y = 0, x = a, y = b.

- **Q.2** (a) Find $L\left\{te^{4t}\cos 2t\right\}$.
 - (b) Find the Fourier cosine integral of $f(x) = \frac{\pi}{2}e^{-x}, x \ge 0.$ 04
 - (c) (i) Find the directional derivative of $f(x, y, z) = 2x^2 + 3y^2 + z^2$ at the 03 point (2,1,3) in the direction of $\overline{a} = (1,0,-2)$.

(ii) If
$$\overline{F} = (2y+3)i + xzj + (yz-x)k$$
, evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ along the path 04

C:
$$x = 2t^2$$
, $y = t_0 = t^3$ from $t=0$ to $t=1$.
OR

(c) Solve in series
$$3xy''+2y'+y=0$$
 using Frobeneous method. 07

- **Q.3** (a) Find the arc length of the curve (semi-circular) 03 $f(x) = \cos t, y(t) = \sin t, z(t) = 0; 0 \le t \le \pi.$
 - (b) A vector field is given by $\overline{F} = (x^2 + xy^2)i + (y^2 + x^2y)j$. Show that 04 \overline{F} is irrotational and find its scalar potential.

(c) Use divergence theorem for $\overline{F} = (x^2 - yz)i + (y^2 - zx)j + (z^2 - xy)k$ 07 over the surface of rectangular parallelepiped, $0 \le x \le a, 0 \le y \le b, 0 \le z \le c$ to evaluate $\iint_{c} \overline{F} \cdot \hat{n} ds$.

(a) Solve
$$\frac{dy}{dx} - y \cot x = 2x \sin x$$
. 03

(b) Solve
$$y''+y'-12y = e^{6x}$$
. **04**

(c) Solve
$$\frac{dy}{dt} - 4y = 2e^{2t} + e^{4t}$$
 by Laplace transformation. 07

1

Download all NOTES and PAPERS at StudentSuvidha.com

Q.4	(a)	Solve $\frac{dy}{dt} + \frac{y}{dt} = y^3$.	03
	(b)	ax - x Solve $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0.$	04
	(c)	Solve $y''+9y'=2x^2$ using the method of undetermined coefficients.	07
O.4	(a)	Solve $4xp^2 = (3x - a)^2$	03
C	(b)	Solve $x^2 y'' + xy' - 4y = x^2$	04
	(c)	(i) Express $2-3x+4x^2$ in terms of Legendre's polynomial.	03
		(ii) Find ordinary and singular points of $2x^2y''+6xy'+(x+3)y=0$.	04
Q.5	(a)	Solve $(y - px)(p - 1) = p$.	03
	(b)	Solve $(D^3 + D)y = \cos x$.	04
	(c)	Solve $y''+4y = \sec 2x$ by using the method of variation of parameters.	07
		OR	
Q.5	(a)	Solve $(D^3 - 6D^2 + 11D - 6)y = 0.$	03
	(b)	Solve $(2x+3)^2 y''-2(2x+3)y'-12y = 6x$.	04
	(c)	Find the series solution of $(1+x^2)y''+xy'-9y = 0$ near the ordinary point $x=0$.	07
		joli	
		Hownhoaded from Sol	
		S	